Tuesday, November 18, 2014

STEM Interpretation

(Note: This is a "reprint" of the Director's Notes for the Fall 2014 INSGC Newsletter.)


What do Toronto and Des Moines have in common?  Yes, they were both on my travel itinerary, as I had the opportunity to speak in both cities about STEM education and outreach, and my Space Grant experiences over the summer.  Des Moines was the site of the Great Midwestern Regional Space Grant meeting, with presentations by each of the eight member state Space Grant Consortia.  Toronto, you might guess, was a bit bigger: the 65th International Astronautical Congress.  In fact, both talks highlighted an even more unlikely location: Arco, ID (the first city in the world powered by nuclear energy, back in 1953) and Craters of the Moon National Historic Monument and Preserve (CRMO NMP).   My trip to Idaho was part of a project known as FINESSE:  Field Investigations to Enable Solar System Science and Exploration.  The goal of FINESSE is to manage an important level of scientific and engineering integration: conduct real planetary science research (in this case, behavior and characteristics of volcanic flows) while also developing improved understanding of human spaceflight exploration capabilities in analog research environments.   CRMO is no stranger to NASA, having been the site of several training missions for a number of Apollo astronauts (including Purdue alumnus Gene Cernan).  And though I could not tell my a’a from my pahoehoe before leaving Indiana, I was a member of the research team on the exploration side.  Magically and wonderfully, this is the sort of research I have been working towards my entire career: examining group-level information flow and task coordination for expedition-class spaceflight teams. 

An unexpectedly rich element of the FINESSE project was STEM outreach to the general public.  The team set up our LIDAR and differential GPS base units at the edge of a scenic lookout; while members of the team and I scrambled over the lava flows, members of the public could (and did) just wander up to us and ask questions about what we were doing.  On “Media Day,” a general public outreach opportunity set up by the Idaho Space Grant Consortium (of which CRMO is an affiliate), a few of us got to present to a standing-room only crowd about the FINESSE research and why it is important and helpful for understanding planetary processes as well as the local features of this fantastic national monument and wilderness preserve.   What is perhaps more striking is that, for most of these interactions (including my impromptu talk to a few visitors outside the visitors’ center that morning), people were not coming to CRMO with a directed focus on NASA, spaceflight exploration, or the breadth of STEM research and engagement.  This is not a trivial matter, and I was reminded (thanks also to other presentations in Des Moines) of how significant the gap is between those of us who do STEM for a living, and those in the general public who may not be aware of “how STEM gets done”.  Think of being at a party, and you’re talking to someone who is droning on about “their favorite thing” in a way that only those who also have that  topic as their own “favorite thing” would understand or care at all. 

If you’ve interacted with me at all, you know that I have a lot of enthusiastic passions and responses to STEM, rocket science, and long duration space flight.  But the challenge for me comes from a reminder of both my doctoral research (also in the National Park Service) and the Media Day at CRMO.  This is the concept of “STEM Interpretation”: when a visitor comes to your site, they may have questions about what they’re seeing, and why it’s important.  The park ranger’s job is to make a connection, and tell a story about the park’s resources and important features: to interpret those features and resources in the context of the visitor’s life.  Now, I can spend a lot of time talking about differential equations and stability factors affecting benefit / cost ratios of information gain and sensemaking effort… but that’s not really interpretation.  That’s my story, my favorite thing. How do we broaden this into an interpretation story?  Well, starting with advanced mathematics probably isn’t the best way to start.  Instead, and as I am hearing at the Toronto conference, there is a strong value to connecting to “what does this mean for us,” wherever that person happens to be now.  What if we turned off space technology for a day?  How would that affect their lives?  (No satellite TV, no location options on your cell phone… wait, no cell phone!)  That’s an interpretation effort. 


In essence, STEM Interpretation is a broad, accessible approach to connecting stories to people where they are, not just where we are.  There is an interest in these topics among the general public, but this interest is also tempered by significant gaps in understanding.   As one of the Toronto speakers highlights from his experience with being interviewed about his role in analog research, people can connect to the human side of STEM.  Not everyone connects to the mathematical or technical details of how STEM happens, and those details can seem very far away.  Interpretation doesn’t mean that we make the public do all the work, or require them to get excited in exactly the same things.   Maybe it’s just a case of helping a variety of people find their thing to get excited, to create a new group of people with a favorite STEM thing, and maybe even a new list of favorite things that we help them find and favor.  Because, in the end, interpretation is also about creating new stories, and sharing those stories in new ways.

Sunday, November 2, 2014

Pain and Passion in the Program

“If we die, we want people to accept it.  We’re in a risky business, and we hope that if anything happens to us, it will not delay the program.  The conquest of space is worth the loss of life.”

That quote is, of course, especially meaningful and painful this week.  It’s one thing to say these words, to write this bold check in a very expensive bet.  But what happens when circumstances dictate that it’s time to collect?

There is a particular poignancy to my comments about the fatal accident of Virgin Galactic SpaceShip Two on Friday, October 31, or the explosion of the Orbital Sciences Antares rocket on Tuesday, October 28.  I spent Friday traveling.  I left Chicago, where I was attending the Human Factors and Ergonomics Society International Annual Meeting (How do people learn, perform, and thrive in a complex world? How do we design and improve the systems with which people must interact?).  My destination was Durham, and the Students for the Exploration and Development of Space SpaceVision conference (How can the next generation of passionate space enthusiasts meet with each other and their teachers and heroes?  How can they get access to their favorite things of the world, and eventually get to work on them for a living?).  By the time I went to bed, I’d read several reports on the SpaceShip Two accident, and the initial stages of analysis of what might have caused the critical anomaly (anomalies?).  In other news, environmental sensing and data collection for the Antares accident site was still ongoing.

Wallops Island and the Mojave Desert now have teams of investigators on site, attempting to figure out what happened, and what we can learn from these profoundly painful and demoralizing experiences.  As of this writing, we don’t know exactly what happened on Tuesday evening, or Friday morning.  We probably won’t know definitively for a while.  But I can tell you two things that they won’t find.  They will not find evidence of someone who woke up that day and thought, “Let me figure out how to screw it up big time today”.  And the teams will not find evidence that space is supposed to be easy.  There may have been errors, but those errors are most painfully manifested in an environment that is fundamentally and profoundly intolerant.  Most of us do not spend much time in the harshest regions of such environments, and we do not respect the environments when we encounter them.  I was profoundly angry and upset to see television and website news reports with banner headlines: “Is this the end of commercial space flight?”  “Can’t we make space travel safe?” My simple response is that the answer to both questions is an unqualified “NO”.  For perspective, a statistic quoted by Lori Garver, currently of the Air Line Pilots Association, during the SpaceVision conference: at one point, the fatality rate for aviation pilots was 87%.  By now, commercial aviation is statistically far safer than driving (but we don’t stop getting in our cars).  The total NASA human spaceflight fatality rate is roughly equivalent to that of those attempting to climb Mt. Everest (but there are still people who choose to do it, because it’s there). 

We can certainly work to make space travel, and many other aspects of the world, safer than they are currently.  If we challenge ourselves, intelligently marry our capabilities and culture, we can get better. Since the first commercial air flights in the 1920s, what has reduced the fatality rate?  There are three main sources of change that I think are relevant.  Beginning with the development of NACA (the forerunner of NASA) in 1915, there has been a great investment in government research to improve the available materials, processes, and technologies applied to airframes, propulsion systems, avionics, wings, and other components.  As capabilities improve, multiple companies have gotten involved to create, and support, growing demand through a variety of technology solutions (some of which is advanced from proprietary, in-house company research).   The third approach is not purely technological, but sociotechnical: we’ve changed the culture and processes of how commercial flight gets done.  The number of accidents in commercial aviation has dropped significantly due to the implementation of human-machine system improvements as well as human-human processes such as Cockpit (now Crew) Resources Management.  And certainly, this pathway has not been without costs; individual aircraft, and even whole solutions (such as the de Havilland Comet), have been forced to pay on the bet.  And yet, we continue to fly.

No, I am not hardened or uncaring about pain or loss; in fact, I am a strong advocate of a national stand-down period of memory, reflection and refocus on the challenges of human spaceflight.  That stand-down period would be January 27 – February 3 each year—a single week window spanning the anniversaries of the loss of Shuttles Columbia and Challenger, and Apollo 1.  Perhaps we have the justification for a similar period of recognition for commercial spaceflight, although it is still very early in our experience.  But the clear answer is to attend to the painful lessons of the past, and use those lessons to do better—not to give up because it was hard, or dangerous, or painful. 


The author of the quote at the start of this essay knew that.  He was willing to make that bet, even knowing that the check might be called in for collection.  He was Gus Grissom.