Tuesday, November 18, 2014

STEM Interpretation

(Note: This is a "reprint" of the Director's Notes for the Fall 2014 INSGC Newsletter.)

What do Toronto and Des Moines have in common?  Yes, they were both on my travel itinerary, as I had the opportunity to speak in both cities about STEM education and outreach, and my Space Grant experiences over the summer.  Des Moines was the site of the Great Midwestern Regional Space Grant meeting, with presentations by each of the eight member state Space Grant Consortia.  Toronto, you might guess, was a bit bigger: the 65th International Astronautical Congress.  In fact, both talks highlighted an even more unlikely location: Arco, ID (the first city in the world powered by nuclear energy, back in 1953) and Craters of the Moon National Historic Monument and Preserve (CRMO NMP).   My trip to Idaho was part of a project known as FINESSE:  Field Investigations to Enable Solar System Science and Exploration.  The goal of FINESSE is to manage an important level of scientific and engineering integration: conduct real planetary science research (in this case, behavior and characteristics of volcanic flows) while also developing improved understanding of human spaceflight exploration capabilities in analog research environments.   CRMO is no stranger to NASA, having been the site of several training missions for a number of Apollo astronauts (including Purdue alumnus Gene Cernan).  And though I could not tell my a’a from my pahoehoe before leaving Indiana, I was a member of the research team on the exploration side.  Magically and wonderfully, this is the sort of research I have been working towards my entire career: examining group-level information flow and task coordination for expedition-class spaceflight teams. 

An unexpectedly rich element of the FINESSE project was STEM outreach to the general public.  The team set up our LIDAR and differential GPS base units at the edge of a scenic lookout; while members of the team and I scrambled over the lava flows, members of the public could (and did) just wander up to us and ask questions about what we were doing.  On “Media Day,” a general public outreach opportunity set up by the Idaho Space Grant Consortium (of which CRMO is an affiliate), a few of us got to present to a standing-room only crowd about the FINESSE research and why it is important and helpful for understanding planetary processes as well as the local features of this fantastic national monument and wilderness preserve.   What is perhaps more striking is that, for most of these interactions (including my impromptu talk to a few visitors outside the visitors’ center that morning), people were not coming to CRMO with a directed focus on NASA, spaceflight exploration, or the breadth of STEM research and engagement.  This is not a trivial matter, and I was reminded (thanks also to other presentations in Des Moines) of how significant the gap is between those of us who do STEM for a living, and those in the general public who may not be aware of “how STEM gets done”.  Think of being at a party, and you’re talking to someone who is droning on about “their favorite thing” in a way that only those who also have that  topic as their own “favorite thing” would understand or care at all. 

If you’ve interacted with me at all, you know that I have a lot of enthusiastic passions and responses to STEM, rocket science, and long duration space flight.  But the challenge for me comes from a reminder of both my doctoral research (also in the National Park Service) and the Media Day at CRMO.  This is the concept of “STEM Interpretation”: when a visitor comes to your site, they may have questions about what they’re seeing, and why it’s important.  The park ranger’s job is to make a connection, and tell a story about the park’s resources and important features: to interpret those features and resources in the context of the visitor’s life.  Now, I can spend a lot of time talking about differential equations and stability factors affecting benefit / cost ratios of information gain and sensemaking effort… but that’s not really interpretation.  That’s my story, my favorite thing. How do we broaden this into an interpretation story?  Well, starting with advanced mathematics probably isn’t the best way to start.  Instead, and as I am hearing at the Toronto conference, there is a strong value to connecting to “what does this mean for us,” wherever that person happens to be now.  What if we turned off space technology for a day?  How would that affect their lives?  (No satellite TV, no location options on your cell phone… wait, no cell phone!)  That’s an interpretation effort. 

In essence, STEM Interpretation is a broad, accessible approach to connecting stories to people where they are, not just where we are.  There is an interest in these topics among the general public, but this interest is also tempered by significant gaps in understanding.   As one of the Toronto speakers highlights from his experience with being interviewed about his role in analog research, people can connect to the human side of STEM.  Not everyone connects to the mathematical or technical details of how STEM happens, and those details can seem very far away.  Interpretation doesn’t mean that we make the public do all the work, or require them to get excited in exactly the same things.   Maybe it’s just a case of helping a variety of people find their thing to get excited, to create a new group of people with a favorite STEM thing, and maybe even a new list of favorite things that we help them find and favor.  Because, in the end, interpretation is also about creating new stories, and sharing those stories in new ways.

No comments:

Post a Comment